蓄能器是液压系统中的一种能量储存装置.在许多方面有着重要的应用。
蓄能器有两种用途。①当低速运动时载荷需要的流量小于液压泵流量,液压泵多余的流量储入蓄能器,当载荷要求流量大于液压泵流量时,液体从蓄能器放出来,以补液压泵流量之不足。②当停机但仍需维持一定压力时,可以停止液压泵而由蓄能器补偿系统的泄漏,以保持系统的压力。蓄能器也可用来吸收液压泵的压力脉动或吸收系统中产生的液压冲击压力。
蓄能器可分为重力加载式、弹簧加载式和气体加载式三大类。
重力加载式蓄能器利用重物的位能来储存能量,是最古老的一种蓄能器。它能提供大容量、压力恒定的液体,但尺寸庞大,反应迟钝。这种蓄能器只用于固定的重型液压设备。
液压油是不可压缩液体,因此利用液压油是无法蓄积压力能的,必须依靠其他介质来转换、蓄积压力能。
例如,利用气体(氮气)的可压缩性质研制的皮囊式充气蓄能器就是一种蓄积液压油的装置。皮囊式蓄能器由油液部分和带有气密封件的气体部分组成,位于皮囊周围的油液与油液回路接通。当压力升高时油液进入蓄能器,气体被压缩,直到系统管路压力不再上升;当管路压力下降时压缩空气膨胀,将油液压入回路,从而减缓管路压力的下降。
蓄能器中的压力可以用压缩气体、重锤或弹簧来产生,相应地蓄能器分为气体式、重锤式和弹簧式。气体式蓄能器中的气体与液体直接接触者,称为接触式,其结构简单,容量大,但液体中容易混入气体,常用于水压机上。气体与液体不接触的称为隔离式,常用皮囊和隔膜来隔离,皮囊体积变化量大,隔膜体积变化量小,常用于吸收压力脉动。重锤式容量较大,常用于轧机等系统中,供蓄能用。
蓄能器类型及应用综述:
蓄能器的类型
弹簧加载式蓄能器利用弹簧的压缩能来储存能量,其结构简单,反应较重力式灵敏,但其容积较小,一般用于小容量、低压系统。
重力及弹簧式蓄能器在应用上都有局限性,现在这种蓄能器已很少使用,目前大量使用的是气体加载式蓄能器。
气体加载式蓄能器的工作原理建立在波义耳定律的基础上。使用时首先向蓄能器充入预定压力的空气或氮气,当外部系统的压力超过蓄能器的压力时,油液压缩气体充入蓄能器,当外部系统的压力低于蓄能器的压力时,蓄能器中的油在压缩气体的作用下流向外部系统。气体加载式蓄能器又分为非隔离式、气囊式、隔膜式、活塞式等几种。
非隔离式蓄能器的气体与液体直接接触,蓄能器中分为油相和气相。这种蓄能器容量大、反应灵敏,缺点是气体易被油液所吸收,气体消耗量较大,元件易气蚀损坏:这种蓄能器现在已很少使用。
气囊式蓄能器由耐压壳体、弹性气囊、充气阀、提升阀、油口等组成。提升阀的作用是防止油液排尽后气囊挤出容器之外。设计允许的最大压力比为4:1(最大压比为最高工作压力与预充气压力之比)。气囊式蓄能器容积较大,反应灵敏,不易漏气,设有油气混杂的可能。气囊式蓄能器的最佳放置方式是竖直放置,充气阀在上方,也可以水平放置,但一定要注意选择适当的充气压力并且限制最大排液流量。
隔膜式蓄能器有两个半球形壳体,两个半球之间夹着一个橡胶薄膜,将油和气分开,其最大压力比为8~l0:1,隔膜式蓄能器的重量和容积比最小,反应灵敏;缺点是容积小。
活塞式蓄能器利用浮动自由活塞将气相和液相隔开。活塞和筒状蓄能器内壁之间有密封,其所推荐的压力比为4:1,其结构简单,寿命长.但由于活塞惯性大,有密封摩擦阻力等原因,反应灵敏性差,气体和液体有相混的可能性。活塞式蓄能器的最佳放置方式是竖直放置,也可以水平放置,但一定要注意保持油液清洁,因为过脏的油液会损坏活塞密封
2 蓄能器的维护
对蓄能器最重要的维护是保持适当的充气压力。随着时间的推移,所有蓄能器的充气压力都会下降,所以要根据使用要求定期检查并充到规定值。蓄能器充气后,气体温度及压力都增加,经过5到l0分钟温度稳定下来以后,重新检测压力。
适当的充气压力对延长蓄能器使用寿命很重要。当用于储存能量时,气囊式蓄能器的充气压力为系统最低工作压力的80%,活塞式蓄能器的充气压力比系统最低工作压力低0.7MPa,过高的充气压力或者降低了系统最低工作压力没有相应降低充气压力都会带来操作上的问题或者损坏蓄能器对于活塞式蓄能器来说,过高的充气压力使得蓄能器在系统最低工作压力排液时活塞太靠近端盖甚至撞击端盖,这将导致活塞及活塞密封的损坏,在这种情况下,常能听到活塞碰撞端盖的声音。对气囊式蓄能器来说,过高的充气压力会将气囊推人提升阀,这会导致提升阀总成的疲劳损坏以及气囊的损坏,过高的充气压力是导致气囊损坏的最常见原因。过低的充气压力以及增加系统压力没有相应增加
充气压力也会加速蓄能器的损坏。对于活塞式蓄能器来说,如果充气压力为零,活塞将被推向气体一端的端盖,也会产生撞击。对气囊式蓄能器来说,若充气压力为零或过低,气囊会被挤入充气阀而损坏。通常来说,这种不适当的充气压力对活塞式蓄能器的破坏程度要轻些。